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Rate Distortion Theory in Shannon Sense

 

Pioneered by Shannon in 1948 and particularly, in 1959.
Probabilistic model: X1X2 · · ·Xn · · · is modeled as an IID
source or in general a stationary, ergodic source.
No constraints whatsoever on the complexity/capability of
the encoder and decoder.
The best rate distortion tradeoff is neatly characterized by

R(D) = inf
X̂ :Ed(X ,X̂)≤D

I(X ; X̂ ) in the IID case

and, in the general stationary ergodic case, by

R(D) = lim
n→∞

1
n

inf
X̂ n:Ed(X n,X̂ n)≤D

I(X n; X̂ n).
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Impact/Limitation

High expectations: believed to provide in principle a
theoretical basis for many practically important lossy
compression problems.
Big disappointments: Impacts on practice? Where?
Why?

The fundamental modeling is problematic: real-world data
are often nonstationary and may not fit into any analytical
model; even if they do, such a model is very difficult to
construct.
Asymptotic analysis is misleading: with asymptotic
analysis, the impact of lossless coding and the selection of
reproduction space on the overall lossy compression
performance is ignored.
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General Lossy Codes

Notation
X : our source alphabet; in some toy examples, X could be
finite; in practice, X is often the real line (−∞,+∞).
X̂ : a reproduction alphabet; in some toy examples, X̂
could be finite and different from X ; in practice, X̂ is often
the same as X = (−∞,+∞).
d : X n × X̂ n → [0,∞): a distortion measure indicating the
quality loss per symbol when x̂ ∈ X̂ n is reproduced at the
decoder side to represent x ∈ X n. d is additive if

d(x , x̂) =
1
n

n∑
i=1

d(xi , x̂i) (1)

for any x = x1x2 · · · xn and x̂ = x̂1x̂2 · · · x̂n, n ≥ 1.
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Figure: 1 Diagram of lossy compression

Definition
The notion of a lossy code is illustrated in Figure 1.
Mathematically, a lossy code is a pair C = (f ,g), where f is a
mapping from X+ to B+, acting as an encoder, g is a partial
mapping from B+ to X̂+, acting as a decoder, and for any
sequence x ∈ X+,

x̂ = g(f (x))

is well defined and has the same length as x . The performance
of C = (f ,g) on each x ∈ X+ is measured by its rate (in bits per
symbol) |f (x)|/|x | and distortion (per symbol) d(x , x̂).
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Assume that there is no transmission loss between the encoder
and decoder. Then the decoder g is more or less a robot. As
such, the encoder f in Figure 1 actually has two important
steps: 1) compute x̂ from x , and 2) encode either directly or
indirectly x̂ in a lossless manner. Since in practical lossy
compression, x̂ is discrete while x is continuous, the first step is
broadly referred to as quantization. Accordingly, as shown in
Figure 2, a lossy code can be also defined alternatively as
follows.

Encoder

Decoder
1 2 mb b b

1 2
ˆ ˆ ˆ

nx x xLossless 

coding
Quantization

1 2 nx x x

Figure: 2 Alternative diagram of lossy compression
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Alternative Definition
a lossy code is a triple C = (Q, φ,g), where

Q = (Q1,Q2) represents a quantization process which, for
each x = x1x2 · · · xn ∈ X n, n ≥ 1, first computes a
reproduction space Q1(x) ⊂ X̂ n and then selects a
reproduction sequence Q2(x) ∈ Q1(x);
φ encodes both Q1(x) and Q2(x) into a binary codeword;
Q and φ together act as an encoder; and
g is a partial mapping from B+ to X̂+, acting as a decoder,
such that

g(φ(Q1(x),Q2(x))) = Q2(x)

for each sequence x = x1x2 · · · xn ∈ X n and for any n ≥ 1.
The performance of C = (Q, φ,g) on x is once again measured
by its rate (in bits per symbol) |φ(Q1(x),Q2(x))|/n and
distortion (per symbol) d(x ,Q2(x)).
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In comparison with standard lossy codes considered in rate
distortion theory in Shannon sense such as scalar quantizers,
vector quantizers, and trellis quantizers, the following two
distinctions stand out:

The reproduction space Q1(x) ⊂ X̂ n is generally sequence
dependent and hence has to be sent to the decoder; its
size could also be countably infinite. This is pretty common
in practice, but more or less neglected in Shannon’s
probabilistic approach to rate distortion theory.
The quantization step Q actually involves the concepts of
both space and time: Q1(x) represents space and Q2(x)
represents time. This space-time perspective to lossy
compression is yet to be fully explored in both theory and
practice.
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Special Case 1: Scalar Quantizers

A lossy code C = (Q, φ,g) is said to be a scalar quantizer if
there is a finite set Y = {y1, · · · , yL} ⊂ X̂ such that for any
n ≥ 1 and any x = x1 · · · xn ∈ X n, Q1(x) = Yn, and
for any n ≥ 1 and any x = x1 · · · xn ∈ X n,

Q2(x) = Q2(x1)Q2(x2) · · ·Q2(xn). (2)

In this case, the entire quantization process can be specified by
the mapping Q2 : X → Y = {y1, · · · , yL}, and one can simply
identify Q2 with Q. C is said to be of fixed rate if each Q2(xi) is
represented by dlog Le bits, and of variable rate otherwise.
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Example: Symmetric Uniform Quantizers of the Midtread Type
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Figure: 3 A symmetric uniform quantizer of the midtread type

Q(x) = q × round
(

x
q

)
Used in JPEG and all video coding standards proposed so
far.
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Hard Decision Quantization (HDQ)
The quantization process given in (2) is also called hard
decision quantization since the reproduction symbol
corresponding to each source symbol xi is uniquely determined
by the source symbol xi only.

Soft Decision Quantization (SDQ)
When inter-symbol correlations are utilized in the lossless
coding of Q2(x1x2 · · · xn), n > 1, HDQ is in general not efficient
in terms of the rate distortion trade-off between the rate
|φ(Q1(x),Q2(x))|/n and the distortion d(x ,Q2(x)). In this case,
a better way of performing quantization is through a technique
called soft decision quantization. Given the reproduction space
Q1(x) for each x = x1x2 · · · xn ∈ X n, n ≥ 1, in SDQ, one maps
x into Q2(x) ∈ Q1(x) in such a way that the i th symbol in Q2(x),
i = 1,2, · · · ,n, can not be determined in general from xi only.
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Rate Distortion Optimization

Let x = x1x2 · · · xn ∈ X n be a sequence to be compressed.

x = x1x2 · · · xn is regarded as a deterministic sequence;
there is no need for modeling.
In view of the alternative definition of lossy code
C = (Q, φ,g), the best rate distortion performance of
x ∈ X n can be expressed by the following optimization

inf
φ,Q1(x)

min
Q2(x)

[
|e(φ)|+ |φ(Q1(x),Q2(x))|

n
+ λd(x ,Q2(x))

]
(3)

where |e(φ)| represents the number of bits needed to
inform the decoder of φ, and λ > 0 represents the relative
weights assigned to the rate and distortion.
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The infimum in (3) is taken over all possible φ and
Q = (Q1,Q2) without any constraints.
Lossy coding given by solutions or approximate solutions
to (3) is called fixed slope lossy coding since −λ is
corresponding to the slope of the rate distortion curve.
If one requires that d(x ,Q2(x)) ≤ D, then one can turn (3)
into constrained optimization:

inf
φ,Q1(x)

min
Q2(x)

[
|e(φ)|+ |φ(Q1(x),Q2(x))|

n

]
(4)

subject to
d(x ,Q2(x)) ≤ D.

Accordingly, lossy coding given by solutions or
approximate solutions to (4) is called lossy coding at a
fixed distortion level.
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Given φ and Q1, lossy coding given by solutions or
approximate solutions to the inner minimization of (3) is
broadly referred to as soft decision quantization (SDQ).
SDQ is playing and will continue to play an important role
in image and video coding standards (current and future).
Equation (3) not only tightly couples lossy coding and
lossless coding to the extent that SDQ can be regarded a
technique of designing lossy coding algorithms from
lossless algorithms, but also brings the quantization space
into the joint optimization.
In (3), one also has the flexibility to limit/control the
decoding complexity/capability by putting some constraints
on φ. This happens to be consistent with the design
philosophy of all image/video coding standards developed
so far.
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Approximate Solution: General Alternating Algorithm

Given the reproduction space Q1(x) ⊂ X̂ n, no matter how
Q2(x) is selected from Q1(x), Q2(x) can be equally
represented by its corresponding index sequence U(x), and the
lossless compression of Q2(x) given Q1(x) is equivalent to that
of U(x). As such, one can write

Q2(x) = Q3(Q1(x),U(x)) and φ(Q1(x),Q2(x)) = φ(Q1(x),U(x))
(5)

where Q3(·, ·) is known and normally dictated by the structure
of the reproduction space Q1(x).

Example 3.6: Illustration of U(x) and Q3

Let Y = {y1, y2, · · · , yL} and L = {1,2, ·,L}. If Q1(x) = Yn, then
U(x) = u1u2 · · · un would be an index sequence from Ln and
the corresponding Q2(x) is equal to yu1yu2 · · · yun .
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In view of (5), we can rewrite (3) as follows:

inf
φ,Q1(x)

min
U(x)

[
|e(φ)|+ |φ(Q1(x),U(x))|

n
+ λd(x ,Q3(Q1(x),U(x)))

]
.

(6)
The double minimization in (6) automatically renders an
alternating algorithm for fixed slope lossy coding, at least in
theory:
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1: Initialize φ0 and Q0
1(x).

2: Fix φi−1 and Qi−1
1 (x). Perform optimal SDQ to compute

U i(x) = arg min
U(x)

{
|e(φi−1)|+ |φi−1(Qi−1

1 (x),U(x))|
n

+ λd(x ,Q3(Qi−1
1 (x),U(x)))

}
. (7)

3: Fix U i(x). Compute

(φi ,Qi
1(x)) = arg min

φ,Q1(x)

{
|e(φ)|+ |φ(Q1(x),U i(x))|

n

+ λd(x ,Q3(Q1(x),U i(x)))
}
. (8)

4: Repeat the above two steps for i = 1,2, · · · until the
convergence criteria are met, and then output e(φi)
followed by φi(Qi

1(x),U i(x)) as the compressed bitstream
for x .
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Remark
The practicality of the above general alternating algorithm
for fixed slope lossy compression depends on how difficult
it is to find solutions or approximate solutions to (7) and
(8), which in turn depends on the structure of the
reproduction space Q1(x) and how complicate the lossless
coding algorithm φ is. As we shall see later, for trellis
reproduction spaces and lossless coding using run-length
coding, Huffman coding, V2V coding, arithmetic coding, or
any combination thereof, algorithms of relatively low
complexity can be developed for finding solutions or
approximate solutions to (7) and (8) in general.
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Even when optimal SDQ algorithms can be developed to
solve (7), different optimal SDQ algorithms are required for
different lossless coding algorithms φ, and the
development of these optimal SDQ algorithms is
sometimes quite challenging even when φ is run-length
coding, Huffman coding, V2V coding, arithmetic coding, or
any combination thereof.
In some applications such as optimizing video/image
coding standards without changing their respective syntax,
the lossless coding algorithm φ is fixed. In this case, the
alternating algorithm computes only U i(x) and Qi

1(x) in
each iteration.
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Example: product reproduction spaces and zero-order adaptive
arithmetic coding

X = X̂ = (−∞,+∞).

d : the squared error distortion measure.
L = {1,2, · · · ,L}.
Q1(x) = Yn for some Y = {y1, y2, · · · , yL}. In this case,
one can ignore the bit rate arising from the encoding of
Q1(x) in the optimization (6).
φ encodes U(x) using the zero-order adaptive arithmetic
coding algorithm over L.
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For any U(x) = u1u2 · · · un ∈ Ln,

|φ(U(x))| =

⌈
− log

∏
l∈L(nl)!

n!
(n+L−1

L−1

)⌉+ 1

= n
L∑

l=1

[
−nl

n
log

nl

n

]
+ O(log n) (9)

where nl is the number times the index l appears in U(x), the
summation in (9) is the zero-order empirical entropy of U(x),
and the term O(log n) is generally independent of U(x) and
represents the cost of transmitting implicitly empirical
frequencies nl to the decoder by the adaptive arithmetic coding.
On the other hand,

d(x ,Q3(Q1(x),U(x))) =
1
n

n∑
i=1

(xi − yui )
2. (10)
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In view of (9) and (10), the object cost function in (6) can be
simplified in this case as follows:

L∑
l=1

[
−nl

n
log

nl

n

]
+
λ

n

n∑
i=1

(xi − yui )
2. (11)

Accordingly, the optimization (6) can be rewritten as

inf
Y

min
U(x)

[
n

L∑
l=1

[
−nl

n
log

nl

n

]
+ λ

n∑
i=1

(xi − yui )
2

]

= inf
Y

min
U(x)

[
n min

q

L∑
l=1

[
−nl

n
log ql

]
+ λ

n∑
i=1

(xi − yui )
2

]

= inf
Y,q

min
U(x)

[
n

L∑
l=1

[
−nl

n
log ql

]
+ λ

n∑
i=1

(xi − yui )
2

]

= inf
Y,q

min
U(x)

n∑
i=1

[− log qui + λ(xi − yui )
2] (12)
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where q is a pmf over L. In comparison with the Lloyd
algorithm for designing optimal variable rate scalar quantizers,
it is easy to see that the optimization (12) is equivalent to (3.82)
when p(x) is the empirical distribution of x = x1x2 · · · xn.
Therefore, the Lloyd algorithm applied to discrete distributions
can be used to solve (12). In particular, given Y and q, the
optimal solution to the inner minimization in (12) is given by

ui = arg min
1≤j≤L

[− log qj + λ(xi − yj)
2] (13)

for i = 1,2, · · · ,n. In this case, optimal SDQ is actually HDQ.
On the other hand, given U(x), the optimal solution to the outer
minimization in (12) is given by

yj =

∑
i:ui =j xi

|{i : ui = j}|
(14)

for j = 1,2, · · · ,L, and setting q to be the empirical distribution
of u(x).
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Exercise: Hamming distortion and run length coding

Let X = X̂ = {0,1}. Let d be the Hamming distortion measure.
In this case, Q1(x) = X̂ n for all x ∈ X n. The optimization (6) is
then reduced to

inf
φ

min
U(x)

[
|e(φ)|+ |φ(U(x))|

n
+ λd(x ,U(x))

]
(15)

where U(x) = Q2(x) ∈ X̂ n. Assume that φ is a run length
coding algorithm. Solve the following minimization problem:

min
U(x)

[
|φ(U(x))|

n
+ λd(x ,U(x))

]
(16)

Then compare the resulting performance with R(D) of an IID
binary source when x = x1x2 · · · xn is drawn from the IID binary
source.
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As economic analysts at Monty Python LLC once describe
corporate life in difficult times such as in recession,

There is nothing quite as wonderful as money.
There is nothing quite as beautiful as cash.

In comparison with efforts spent in industry to find better
image/video coding algorithms by trial and error,

There is nothing quite as wonderful as the
computational approach to lossy compression.
There is nothing quite as beautiful as optimal SDQ.
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Fixed Product Reproduction Spaces

Fix Y = {y1, y2, · · · , yL} ⊂ X̂ . Let Q1(x) = Yn for all
x = x1x2 · · · xn ∈ X n. Then the optimization (6) is reduced, in
this case, to

inf
φ

min
U(x)

[
|e(φ)|+ |φ(U(x))|

n
+ λd(x ,Q3(Q1(x),U(x)))

]
= min

U(x)
inf
φ

[
|e(φ)|+ |φ(U(x))|

n
+ λd(x ,Q3(Q1(x),U(x)))

]
= min

U(x)

[
infφ[|e(φ)φ(U(x))|]

n
+ λd(x ,Q3(Q1(x),U(x)))

]
.

(17)

Assume that the decoder of each φ can be implemented by a
Turing machine, which is the case in practice. From the
definition of Kolmogorov complexity, it then follows that (17) is
equivalent to
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min
U(x)

[
K (U(x))

n
+ λd(x ,Q3(Q1(x),U(x)))

]
(18)

where K (U(x)) is the Kolmogorov complexity of U(x) ∈ Ln.
Given the reproduction space Yn, (18) then gives the best rate
distortion performance of each individual sequence
x = x1x2 · · · xn ∈ X n.

By turning (18) into constrained optimization, we get the notion
of distortion Kolmogorov complexity defined first by Yang and
Shen in 1993.

Distortion Kolmogorov complexity with respect to a fixed
product reproduction space

For each x = x1x2 · · · xn ∈ X n, its distortion Kolmogorov
complexity with respect to Yn is defined as

KY(x ,D)
∆
= min{K (U(x)) : d(x ,Q3(Q1(x),U(x))) ≤ D}. (19)
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Theorem (2 Equivalence between KY(x ,D) and RY(D))

Let X = {Xi}∞i=1 be a stationary ergodic source. Let RY(D) be
the rate distortion function of X with respect to Y and d. Then
for any D > inf{D : RY(D) <∞},

KY(X1X2 · · ·Xn,D)

n
→ RY(D) (20)

with probability one as n→∞, i.e.,

Pr
{

lim
n→∞

KY(X1X2 · · ·Xn,D)

n
= RY(D)

}
= 1.

Remark
Theorem 2 is the lossy counterpart of the equivalence result
between Kolmogorov complexity and Shannon entropy when
the source to be compressed is random and stationary.
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Doubly universal codebooks

Fix Y = {y1, y2, · · · , yL} ⊂ X̂ , and R > 0. For any n ≥ 1, define

Cn
∆
={yu1yu2 · · · yun : K (u1 · · · un) ≤ nR − 1}. (21)

Then
|Cn| ≤ 2bnRc (22)

and Cn, n = 1,2, · · · , give rise to a fixed rate lossy code
C = (Q, φ,g), where for any x = x1x2 · · · xn ∈ X n,

Q1(x) = Cn, Q2(x) = arg min
C∈Cn

d(x ,C) (23)

and φ encodes each Q2(x) by using a fixed number of bits
bnRc+ 2blog(n + 1)c.
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Theorem (3 Universality)

Let C = (Q, φ,g) be the fixed rate lossy code as defined in (23).
Then for any stationary, ergodic source X = {Xi}∞i=1,

d(X n,Q2(X n))→ DY(R) (24)

with probability one as n→∞, where X n = X1X2 · · ·Xn, and
DY(R) is the unique distortion D such that RY(D) = R.

Remark
Theorems 2 and 3 remain valid even if the Kolmogorov
complexity K (U(x)) of U(x) is replaced by the codeword
length of U(x) assigned by a universal lossless coding
algorithm such as the Lempel-Ziv algorithms and
Yang-Kieffer (grammar-based) coding algorithms.
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The construction of Cn in (21) is particularly interesting. It
does not depend on the source to be compressed; it does
not depend on the actual distortion measure either! In this
sense, the codebooks Cn, n ≥ 1, are doubly universal.
The key implication of these results is that lossless coding
plays a vital role in lossy coding. If the lossless coding
algorithm used in SDQ is efficient on its own, the resulting
optimal SDQ can achieve (asymptotically) the theoretic
rate distortion performance with respect to the given
reproduction space. As such, the lossless coding algorithm
used in SDQ should be designed in such a way that it is
efficient on its own and at the same time it also facilitates
the design of algorithms for optimal SDQ.
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Formal problem definition

subject to

subject to
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Constrained optimization:

Equivalently:

Unconstrained optimization:



Problem solutions – iterative algorithm



Problem solutions – graph-based run-length 
coding optimization
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Problem solutions – graph-based run-length 
coding optimization: example

1 0 6 22
(0, 5) (4, 3) (15, 0) (9, 1) (0, 0) 

 32 end

One-to-one mapping between a legitimate path from state 0 to 
the end state and a sequence of run-size pairs of an 8x8 block.



Problem solutions – optimal quantization table 
updating
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Experimental results – PSNR values

Image Rate
(bpp)

Customized 
baseline 

JPEG

Adaptive 
threshold 

[3]

Proposed 
run-

length 
coding 

opt.

Default
q-tbl + 

proposed 
joint opt.

Initially 
optimized 

q-tbl + 
proposed 
joint opt.

Joint 
opt. [4]

Baseline 
wavelet 

transform
coder [7]

 

Embedded 
zerotree 
wavelet 

algorithm 
[8]

Lena

.25 31.63 32.1 32.21 32.37 32.47 32.3 33.17 33.17

.50 34.90 35.3 35.43 35.80 36.04 35.9 36.18 36.28

.75 36.62 37.2 37.32 37.68 38.14 38.1 38.02 N/A

1.00 37.91 38.4 38.68 39.26 39.63 39.6 39.42 39.55

Barbara

.25 25.31 25.9 26.09 26.93 27.04 26.7 26.64 26.77

.50 28.34 29.3 29.62 30.66 30.94 30.6 29.54 30.53

.75 31.02 31.9 32.30 33.14 33.82 33.6 32.55 N/A

1.00 33.16 34.1 34.52 35.23 36.07 35.9 34.56 35.14



Experimental results – R-D plot (Lena)
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Experimental results – R-D plot (Barbara)
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Experimental results – complexity glance

Settings Float DCT Fast integer DCT

Comparing 3 size groups 1.5 s 0.3 s

Comparing 10 size groups 2.0 s 0.7 s

CPU time of the proposed joint optimization algorithm with one iteration
on a Pentium PC (512x512 Lena) 
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